

Magnetic field structure in single late-type giants:

β Ceti in 2010 - 2012

S. Tsvetkova

P. Petit

M. Aurière

R. Konstantinova-Antova

G. A. Wade

C. Charbonnel

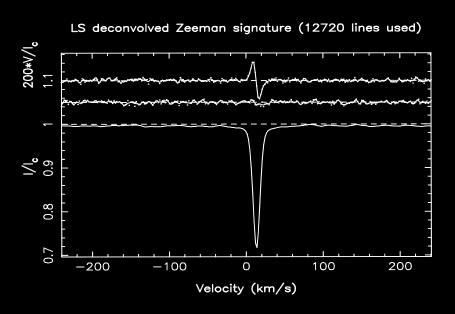
T. Decressin

R. Bogdanovski

Telescopes

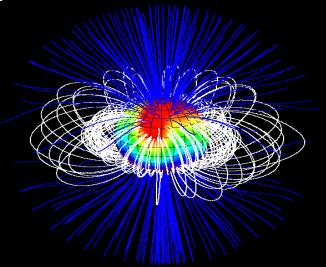
- ✓ Telescope Bernard Lyot, Pic du Midi, France
- ✓ Canada France Hawaii Telescope

Telescop	Diameter	Instrument	Resolutio	Wavelength
е			n	
TBL	2 m	NARVAL	65 000	370 ÷ 1050 nm
CFHT	3.6 m	ESPaDOnS	65 000	370 ÷ 1050


Second **Bcool** meeting, October 2012, Göttingen

LSD Technique

Donati et al. 1997


- ✓ Consist of averaging thousand of absorption lines from one spectrum
- ✓ All selected lines of the intensity spectrum have the same profile
- ✓ Improves S/N ratio
- ✓ Obtains the average photospheric profiles of Stokes I and V
- Detects weak magnetic signatures which would not be visible in individual lines

Zeeman - Doppler Imaging (ZDI)

- ✓ tomographic technique
- modeling sets of rotationally modulated circularly polarized profiles (Stokes V) of the spectral lines
- surface magnetic field is projected onto a spherical harmonics frame
- magnetic field is resolved into poloidal and toroidal components
- Stokes I profiles have a Gaussian shape
- ✓ Synthetic Stokes I and V profiles are computed and compared to the observed profiles

Donati et al. 2006

Semel 1989 Donati & Brown 1997 Donati et al 2003 Donati et al 2006

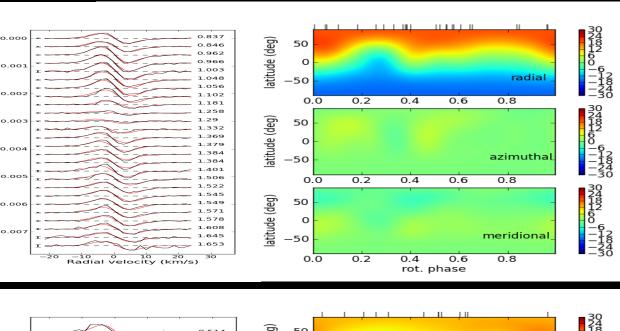
Parameters for β Ceti

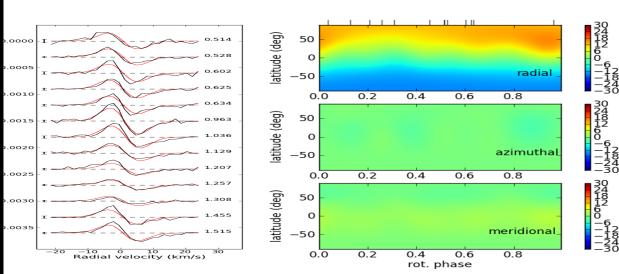
✓ Rotational period 217 days

Petit et al 2002 maximum entropy principles synthethic ZDI Stokes V profiles

$$\checkmark$$
 V sini = $3 - 4$ km/s

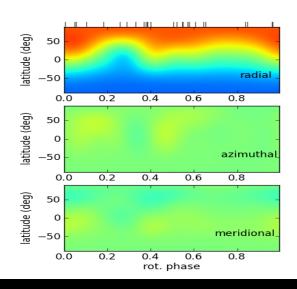
✓ Inclination angle i = 40° - 80°

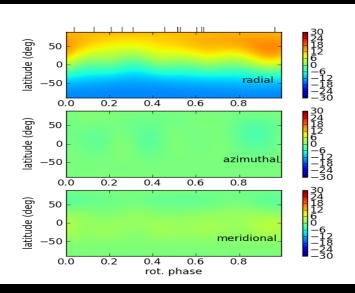

$$i = 60^{\circ}$$


 $i = 60^{\circ}$ \rightarrow The Best Magnetic Model \rightarrow maximum entropy method (Donati 2001, Morin et al 2008)

β Ceti - Magnetic Maps

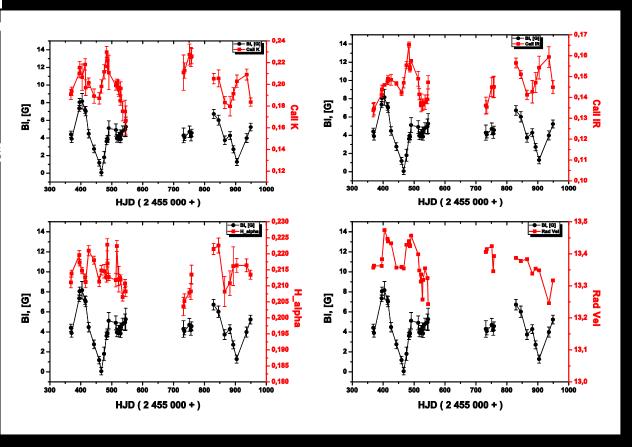
- ✓ June 2010 December 2010
- ✓ June 2011 January 2012
- ✓ dipolar configuration
- ✓ dominating poloidal component 98% of the reconsructed magnetic energy





β Ceti - Magnetic Maps

	chi^2	Mean Field	Poloidal	Dipol	Axisymmetr y
2010	2.2	12.1	97.7	79.3	79.3
2011 - 2012	2.4	9.8	98.5	94.0	89.1



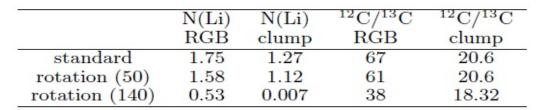
β Ceti - tracers of activity

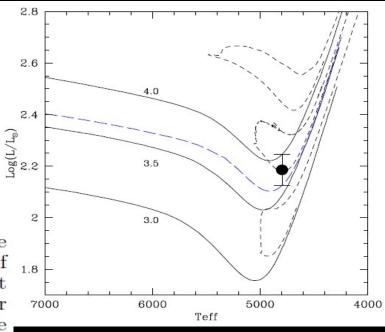
Surfaced-averaged longitudinal magnetic fi $0.1 \div 8.2 G$

Call K: $0.17 \div 0.23$

> $H \alpha$: $0.20 \div$ 0.22

Call IR: $0.13 \div$ 0.17


RV: $13.24 \div$ 13.47 km/s



β Ceti - mass, evolutionary status, surface abundances

C. Charbonnel & T. Decressin

Table 2: Theoretical predictions for surface Li abundance and carbon isotopic ratio at the effective temperature of β Ceti on the first ascent of the red giant branch and at the clump in the 3.5 $\rm M_{\odot}$ standard and rotating models for two initial rotation velocities (50 and 140 km.s $^{-1}$). These numbers have to be compared with the observational values for β Ceti , namely N(Li)=0.01 and $^{12}\rm C/^{13}\rm C=19\pm2$ (see text for references and details)

- ✓ B-type mainsequence progenitor
- ✓ clump

β Ceti - Rossby Number

C. Charbonnel & T. Decressin

✓ Def: Ro - the ratio between the rotational period Prot and the convective turnover time τ_c

Ro = Prot /
$$\tau_c$$
 = 1.26

Prot = 217 d $\tau_c = 172$ d (Hp/2 above the base of the convective envelope)

✓ Mean magnetic field of the main-sequence progenitor:

$$B (MS) = B [R / R (MS)]^{2}$$
 (Stepien 1993)

R(MS) = 2.01 Rsun

R = 17.98 Rsun

B = 12.1 G and 9.8 G

Second BCOOI meeting, October 2012, Göttingen

Conclusions

- ✓ Two magnetic maps of the surface magnetic field topology
- ✓ ZDI analysis: dipolar configuration with a dipole strength 12.1 G and 9.8 G for the two maps, respectively
- ✓ The large-scale magnetic field is mainly axisymmetric.
- \checkmark The behavior of the line activity indicators Hα, Call K, Call IR and the RV correlates rather well with the behavior of the longitudinal magnetic field Bl \rightarrow dipole topology
- Clump position on the HRD
- ✓ Ro = 1.26
- \checkmark B (MS) = 784 − 968 G (Aurière et al. 2007)
 - → Ap star descendant

Acknowledgements

Svetla Tsvetkova is grateful to

- ✓ Bulgarian NSF contract DO 02-85 for the financial support
- ✓ contract DSAB 02/3 together with Bulgarian NSF by which we could receive some of the observational data
- ✓ contract DMU 03-87 for the financial support

Thank You

for your attention!